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Abstract

The combination of deep learning algorithm and materials science has made significant progress
in predicting novel materials and understanding various behaviours of materials. Here, we intro-
duced a new model called as the Crystal Transformer Graph Neural Network (CTGNN), which
combines the advantages of Transformer model and graph neural networks to address the com-
plexity of structure-properties relation of material data. Compared to the state-of-the-art models,
CTGNN incorporates the graph network structure for capturing local atomic interactions and
the dual-Transformer structures to model intra-crystal and inter-atomic relationships comprehen-
sively. The benchmark carried on by the proposed CTGNN indicates that CTGNN significantly
outperforms existing models like CGCNN and MEGNET in the prediction of formation energy and
bandgap properties. Our work highlights the potential of CTGNN to enhance the performance of
properties prediction and accelerates the discovery of new materials, particularly for perovskite

materials.



I. INTRODUCTION

Deep learning (DL) and machine learning (ML) has brought significant impacts to a va-
riety of scientific fields such as biology!, chemistry? physics® and mathematics®. While in
materials science, the use of deep learning has led to important progress in material prop-

erties prediction”, materials generation® , etc®1Y

. Several DL models have been developed
to capture material modality and predict their properties, such as Crystal Graph Convo-
lutional Neural Network (CGCNN)®, MatErials Graph Network (MEGNET), Atomistic
Line Graph Neural Network (ALIGNN)* improved Crystal Graph Convolutional Neural
Networks (ICGCNN)*, OrbNet*, and similar variants’>*#>. They have achieved great suc-
cess in applications, such as learning properties from multi-fidelity data®®, discovering stable
lead-free hybrid organicinorganic perovskites4”, mapping the crystal-structure phase“®, and

designing material microstructures®”.

Despite the graph-based DL model, the Transformer®” model provides a new way to cap-
ture the material information, and some models based on Transformers to predict material
properties have been developed, such as MatFormer®Y, Graphformer®? , etc. These models
integrate the Transformer as the core network, utilizing the connections within graphs as
the queries, keys, and values (QKV) in the attention mechanisms, distinguishing them from
traditional graph neural networks. Therefore, they lose the conventional graph structure.
Some other models based on Transformer models use the structures of graph neural networks
such as ADA-GNN# TG-GNN#4* GATGNN=? etc. But these models further introduce
high complexity on the basis of Transformer architecture, which are not conducive to model
training. To address the aforementioned limitations, in this work, the Crystal Transformer
Graph Neural Network (CTGNN) is proposed, which combines the Transformer structures’

message capturing capabilities and traditional inductive bias of GNNs.

Generally, the GNN-based models extract structural data such as bond length, angles,
and neighbour atoms, which are important information to predict the materials proper-
ties. In contrast to traditional GNNs which only capture bond length, our proposed CT-
GNN employs an angular encoder kernel to encode angle features, and the dual-Transformer
structures are built, which include one Transformer architecture focusing on intra-crystal in-
teractions to model the immediate chemical environment of atoms, and another to analyze

inter-atomic relationships within an atom’s neighborhood facilitates a thorough understand-



ing of material behaviors on both local and broader scales. In this work, we conducted a series
of ablation experiments to verify the importance of our angular encoding and Transformer
architecture in improving model accuracy. We also tested the performance of CTGNN on
some widely-used materials database, achieving better results than other models we used

for comparison.

II. MODEL
A. Transformer Model

The Transformer model’?, a key component in the CTGNN architecture, is based on the
multihead-self-attention mechanisms. The multi-head design allows the model to efficiently
process sequential data in parallel, enhancing its abilities, while the self-attention method
allows it to learn relationships between sequences, which is the core of the algorithm.

The self-attention mechanism can be described by

Attention(Q, K, V') = softmax (Cf/[c(l_:) 1% (1)

where ), K, and V represent queries, keys, and values, while dj, is the dimension of the key
vectors, serving as a reweighting factor that stablizes training process. The multi-head-self-

attention allows the model to simultaneously process information from different groups,
MultiHead(Q, K, V) = Concat(head, ..., head,) W (2)

where head; = Attention(QWiQ, KWE VWY), and WO is a parameter matrix.
Then the feed-forward Networks, consisting of two linear transformations with a ReLU

activation in between, are given by
FFN(JJ) = maX(O, SL’Wl + bl)WQ + bz (3)

where W and W5 are weight matrices, and b, and by are bias vectors. These networks are

applied independently to each position in the sequence.

B. CTGNN Model

The framework of the proposed CTGNN model is shown in Figll] In this framework, each

atom is denoted as a node while each atom connection as an edge. The node 7 in the graph
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FIG. 1: Our CTGNN framework. Transformer Layer denotes as Transformer encoder for
atom features and neighbor features. After the Transformer Layers, CGCNN convolution
layers are used. And finally pooling and predicting layers are used to get the prediction.

Topological features include angular and distances (RBF) information.

G is characterized by a vector v;, while the connection between two nodes 7,5 is denoted
as an edge vector u(i,j)r. The node and edge features are updated by Transformer-based
graph convolution calculations.

First, the node features are updated by the intra-crystal Transformer layer as,

ol = MultiHead(Q, K, V) + vV (4)

Q = K =V = Linear(v\" ") (5)

where MultiHead(Q, K, V') is the multi-head self-attention mechanism defined as:

Attention(Q, K, V') = softmax <QKT> Vv (6)

Vdy,
MultiHead(Q, K, V') = Concat(head, ..., head,) W (7)
head; = Attention(QW<, KWX v (8)

After the multi-head attention, the feed-forward network (FFN) is applied,
v = FFN(v") (9)
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FFN(I) = maX(O, JIWl + bl)WQ + b2 (10)

Similarly, the edge features are updated by the inter-atomic Transformer layer,

u(i, /)" = MultiHead(Q, K, V) + u(i, )™ (11)
Q) = K =V = Linear(u(i, j)(t 1)) (12)

where the same multi-head self-attention and FFN mechanisms are applied to the edge

features,

u(i, j)\) = FFN(u(i, j)}) (13)

After updating the node and edge features with the intra-crystal and inter-atomic dual-

Transformer layers, the model concatenates the features by,

=0 @0 @ uli (14)
where & means concatenation and zy}k represents the combined feature of atoms and edges.
Then the atom feature vectors are updated through a non-linear graph convolution func-

tion,

(t+1) + W(t) + b(t) ®g(z (t) W(t) + b(t) 15
2 ] k' f 1,5,k

where g denotes the activation function, o is the sigmoid function served as a gate, ® denotes
element-wise multiplication, W]St) and W are the convolution weight matrices, and bgf) and
b are the bias vectors.

After R convolutional iterations, the network updates the feature vector UZ(R) for each
atom. A pooling layer then aggregates these vectors into a global feature vector v, for the

entire crystal by,
Ve = Pooling({va)| i € atoms}) (16)

The pooled vector v, is a vector containing all the information of the subgraphs of the
crystal. It is permutation invariant, so it can capture the information ignoring the noise
and rotate translation. It is then passed through fully-connected layers to predict the target
property ¢, with the training process minimizing the cost function J(y, ), representing the

difference between the predicted property y and the DFT-calculated property y.



C. Crystal Angular Encoder

To enrich the information of edges, we go beyond merely distance information by adding
angular information into the edges, which allows for a more detailed depiction of the spatial
relationships between atoms. For a given atom 7 and its neighbor 7, we calculated the related
angles 0,, 0,, and 6, between the edge vector r;; and the axes vectors x, y, and z by,

0, = cos™* (L) , (17)

s 1]

, = cos! (_Y> , (18)

s 11y [

0, — cos! (_) | (19)

51|
These angles are then encoded into a feature vector using an angular encoder, which

discretizes each angle into one of several predefined bins, written as,

1, if k-AO<6, < (k+1)-Af
Encodedy, [k] = ; (20)

0, otherwise

where Af = b—ﬂ and k ranges from 0 to bins — 1. Analogous encoding processes apply
ins
to 0, and 6,. The edge feature vector which combining RBF (Radial Basis Function) and

angular features, is used as the edge feature which is further processed in the model.

D. benchmark

In order to evaluate the performance, we used JARVIS-DFT=Y dated 2021.8.18 as the
training database. The dataset comprises 25,922 materials with bandgap, formation energy,
and etc. For training, validation and testing splits, JARVIS-DFT®" database and its prop-
erties are split into 60% training, 20% validation, and 20% testing sets. To further evaluate
the performance, we merge two distinct datasets of perovskite materials®™*® to create a more
diverse and representative dataset which contains 3489 perovskite structures with formation
energy and bandgap, key properties for perovskites. For comparison, the state-of-the-art

GNN models of CGCNN and MEGNET are also used to model the formation energies and



bandgaps of the materials involved in the teo materials database, and the resuts are listed

in Tabldll

TABLE I: benchmark on jarvist dataset and perovskite dataset. £y and £, denotes

formation energy and bandgap respectively.

target model MAE R?
CGCNN 0.027 0.988
Pero(Ey) (eV/atom) MEGNet 0.032 0.982
CTGNN 0.013 0.996
CGCNN 0.285 0.855
Pero(Ey) (eV) MEGNet 0.296 0.845
CTGNN 0.156 0.960
CGCNN 0.531 0.914
Jarvist(Ey) (eV) MEGNet 0.493 0.908
CTGNN 0.469 0.910

As listed in Table [[, our proposed CTGNN model demonstrates superior performance
on the perovskites dataset on formation energy and bandgap prediction. The plots of the
target and prediction distribution are also shown in Fig[2] Specifically, CTGNN achieves the
lowest MAE on the formation energy prediction on the Pero dataset, compared to CGCNN
and MEGNet models. With the MAE of 0.013 eV /atom, CTGNN is 51.85% and 59.38%
better than CGCNN and MEGNet, whose MAE is 0.027 and 0.032 eV /atom respectively.
The R? is also the highest, with 0.8% and 1.4% improvements. When it comes to the
bandgap prediction on the Pero dataset, CTGNN also surpasses CGCNN and MEGNet
models with a lower MAE and higher R?. To be more detailed, the MAE is 0.156 eV,
which is 45.26% and 47.30% better. The Jarvist dataset exhibits the same trend, with the
CTGNN model enjoying the lowest MAE of 0.469 eV, which is 11.67% and 4.87% better,
a significant improvement. These results underline the effectiveness of CTGNN in handling
complex material datasets, especially in the perovskites datasets over traditional methods

like CGCNN and MEGNet, highlighting its potential in the perovskites era.
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FIG. 2: Plots of predicted formation energy and bandgap versus target for CGCNN,

MEGNet, and CTGNN models, respectively. the upper and right part are the target and

III.

prediction data distribution.

RESULTS AND DISCUSSIONS

A. Ablation Study

To understand the contribution of different components in the CTGNN model, we con-

ducted an ablation study on the Pero dataset for bandgap prediction. The study involved

removing key components from the model and evaluating the resulting performance. The

results are summarized in Table [

TABLE II: Ablation study on Pero dataset for bandgap prediction.

Model MAE (eV) R?

CTGNN (full model) 0.156 0.960
Without Angular Encoding 0.188 0.946
Without inter-atomic Transformer 0.190 0.945
Without Transformer 0.285 0.855

As shown in Table [[I} removing the angular encoding and the neighbor Transformer from



the CTGNN model leads to a decrease in performance. Specifically, without the angular
encoding, the MAE increases to 0.188 eV and the R? decreases to 0.946. Similarly, without
the inter-atomic Transformer, the MAE increases to 0.190 eV and the R? decreases to 0.945.

When the dual-Transformer is totally removed The performance drop to 0.285 from 0.190.

B. Explainability

To explore the explainability of our CTGNN model, we visualized the attention weights
of the first layer of the atomic transformer for four specific crystals: HyNSnF3, HyNGels,
C4H1sNSnCl3, and C4H13NGeCls to help us understand how the model focuses on different
parts of the crystal structure during the prediction process.

Figure [3| shows the attention weights for the first layer of the transformer for six different
crystals. In these heatmaps, the x-axis and y-axis represent the sequence positions of the
atoms in the crystal structure, and the color intensity indicates the attention weight assigned
by the transformer.

From the visualizations, we can observe that similar molecular formulas tend to ex-
hibit similar attention patterns. For instance, HyNSnF5; and Hy;NGels, C;H;3,NSnCl; and
C4HsNGeCl3 show somewhat similar attention weight distributions, indicating that the
model focuses on similar local atomic environments and interactions. This is expected as
both compounds have similar molecular structures, only the central atoms Sn and Ge, as
well as the differences between atoms F and 1.

On the other hand, CoHgNPbCl3 and H;NoPbF3 show distinct attention weight patterns
compared to the first two. This difference reflects the varied atomic environments and inter-
actions present in these compounds, which significantly differ in their molecular composition.
The structures of these six crystals are shown in Figure

The observed similarities and differences in attention patterns can be attributed to the
chemical nature of the elements involved. For example, Sn and Ge belong to the same group
in the periodic table and have similar chemical properties. Their similar attention patterns
suggest that the model captures the shared chemical behavior, such as bonding characteris-
tics and atomic radii, which are crucial for the crystal’s stability and properties. In contrast,
the distinct attention patterns for CoHgNPbCl3 and HsNoPbF3 highlight the different roles

of carbon and nitrogen in the chemical environment. Carbon forms strong covalent bonds
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FIG. 3: Visualization of attention weights for the first layer of the atomic transformer for
different crystals. The larger the corresponding parameter between two atoms, the
stronger the interaction. (a) corresponds to HyNSnFj. (b) corresponds to HyNGels. (c)
corresponds to C4;H1oNSnCls. (d) corresponds to C4H1oNGeCls. (e) corresponds to
C2,HgNPbCl;. (f) corresponds to HsNoPbFs.

and contributes to the rigidity and stability of the structure, whereas nitrogen’s bonding
and interactions can vary significantly depending on its oxidation state and surrounding
atoms. Additionally, the presence of different halogens (Cl and F) introduces variations in
electronegativity and bond strength, further influencing the attention patterns observed.

Based on the aforementioned chemical element analysis, X-ray diffraction (XRD) pat-
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FIG. 4: Side view of six crystal structures. The bandgap of each crystal is provided.

terns further confirm the structural similarities of these crystals. As shown in Figure [5[(a),
H4NGels and H4NSnF3 exhibit a relatively similar overall diffraction peak distribution,
particularly around the diffraction angles of approximately 26.8 and 39.0, where the peak
positions are closely aligned. Differences in the atomic sizes of Ge, Sn, I and F result in
variations in peak shape and intensity at specific diffraction angles. Specifically, the intro-
duction of Sn leads to a slight broadening of peaks and the splitting of certain localized
peaks. However, the critical lattice spacing and overall symmetry remain fundamentally
unchanged, and HyNGel; and HyNSnF3 can still be considered as having partially similar

crystal structures.

As shown in Figure (b), the diffraction peaks of C;H;3NGeCls and C4H1oNSnCl3 are

11
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FIG. 5: The XRD diffraction patterns of the first four crystal structures show similar peak

positions and shapes.

highly consistent across almost all 20 positions. Notably, in the range of 10 to 40, the
positions of the main peaks completely overlap, and the intensity profiles are also nearly
identical. This indicates that the two materials share a high degree of structural similarity.
Although Ge and Sn are distinct elements, their substitution in these compounds has not
significantly altered the overall crystal symmetry or lattice parameters. Therefore, it can be

concluded that C4H1oNGeCls and C4H15NSnCls possess highly similar crystal structures.

IV. CONCLUSION

CTGNN model represents a significant progress in the field of material computing, par-
ticularly in perovskite materials. By innovatively combining the advantages of Transformer
model and graph neural networks, CTGNN can capture both the local and global interac-
tions in materials efficiently. The addition of angular kernels allows for a more comprehensive
representation of atomic structures, surpassing the traditional models which only focus on
distances. Our results demonstrate that CTGNN outperforms existing models in predicting
key material properties such as formation energy and bandgap, which is confirmed by the
benchmark tests on multiple datasets. CTGNN not only enhance the ability to predict ma-
terial properties with greater accuracy, but also provide a solid foundation for discovering

new materials.
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