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Abstract

The combination of deep learning algorithm and materials science has made significant progress

in predicting novel materials and understanding various behaviours of materials. Here, we intro-

duced a new model called as the Crystal Transformer Graph Neural Network (CTGNN), which

combines the advantages of Transformer model and graph neural networks to address the com-

plexity of structure-properties relation of material data. Compared to the state-of-the-art models,

CTGNN incorporates the graph network structure for capturing local atomic interactions and

the dual-Transformer structures to model intra-crystal and inter-atomic relationships comprehen-

sively. The benchmark carried on by the proposed CTGNN indicates that CTGNN significantly

outperforms existing models like CGCNN and MEGNET in the prediction of formation energy and

bandgap properties. Our work highlights the potential of CTGNN to enhance the performance of

properties prediction and accelerates the discovery of new materials, particularly for perovskite

materials.
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I. INTRODUCTION

Deep learning (DL) and machine learning (ML) has brought significant impacts to a va-

riety of scientific fields such as biology1, chemistry2,physics3 and mathematics4. While in

materials science, the use of deep learning has led to important progress in material prop-

erties prediction5, materials generation6 , etc7–10. Several DL models have been developed

to capture material modality and predict their properties, such as Crystal Graph Convo-

lutional Neural Network (CGCNN)5, MatErials Graph Network (MEGNET)11, Atomistic

Line Graph Neural Network (ALIGNN)12, improved Crystal Graph Convolutional Neural

Networks (iCGCNN)13, OrbNet14, and similar variants15–25. They have achieved great suc-

cess in applications, such as learning properties from multi-fidelity data26, discovering stable

lead-free hybrid organicinorganic perovskites27, mapping the crystal-structure phase28, and

designing material microstructures29.

Despite the graph-based DL model, the Transformer30 model provides a new way to cap-

ture the material information, and some models based on Transformers to predict material

properties have been developed, such as MatFormer31, Graphformer32 , etc. These models

integrate the Transformer as the core network, utilizing the connections within graphs as

the queries, keys, and values (QKV) in the attention mechanisms, distinguishing them from

traditional graph neural networks. Therefore, they lose the conventional graph structure32.

Some other models based on Transformer models use the structures of graph neural networks

such as ADA-GNN33, TG-GNN34, GATGNN35, etc. But these models further introduce

high complexity on the basis of Transformer architecture, which are not conducive to model

training. To address the aforementioned limitations, in this work, the Crystal Transformer

Graph Neural Network (CTGNN) is proposed, which combines the Transformer structures’

message capturing capabilities and traditional inductive bias of GNNs.

Generally, the GNN-based models extract structural data such as bond length, angles,

and neighbour atoms, which are important information to predict the materials proper-

ties. In contrast to traditional GNNs which only capture bond length, our proposed CT-

GNN employs an angular encoder kernel to encode angle features, and the dual-Transformer

structures are built, which include one Transformer architecture focusing on intra-crystal in-

teractions to model the immediate chemical environment of atoms, and another to analyze

inter-atomic relationships within an atom’s neighborhood facilitates a thorough understand-
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ing of material behaviors on both local and broader scales. In this work, we conducted a series

of ablation experiments to verify the importance of our angular encoding and Transformer

architecture in improving model accuracy. We also tested the performance of CTGNN on

some widely-used materials database, achieving better results than other models we used

for comparison.

II. MODEL

A. Transformer Model

The Transformer model30, a key component in the CTGNN architecture, is based on the

multihead-self-attention mechanisms. The multi-head design allows the model to efficiently

process sequential data in parallel, enhancing its abilities, while the self-attention method

allows it to learn relationships between sequences, which is the core of the algorithm.

The self-attention mechanism can be described by

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

where Q, K, and V represent queries, keys, and values, while dk is the dimension of the key

vectors, serving as a reweighting factor that stablizes training process. The multi-head-self-

attention allows the model to simultaneously process information from different groups,

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O (2)

where headi = Attention(QWQ
i , KW

K
i , V W

V
i ), and WO is a parameter matrix.

Then the feed-forward Networks, consisting of two linear transformations with a ReLU

activation in between, are given by

FFN(x) = max(0, xW1 + b1)W2 + b2 (3)

where W1 and W2 are weight matrices, and b1 and b2 are bias vectors. These networks are

applied independently to each position in the sequence.

B. CTGNN Model

The framework of the proposed CTGNN model is shown in Fig1. In this framework, each

atom is denoted as a node while each atom connection as an edge. The node i in the graph
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FIG. 1: Our CTGNN framework. Transformer Layer denotes as Transformer encoder for

atom features and neighbor features. After the Transformer Layers, CGCNN convolution

layers are used. And finally pooling and predicting layers are used to get the prediction.

Topological features include angular and distances (RBF) information.

G is characterized by a vector vi, while the connection between two nodes i,j is denoted

as an edge vector u(i, j)k. The node and edge features are updated by Transformer-based

graph convolution calculations.

First, the node features are updated by the intra-crystal Transformer layer as,

v
(t)
i = MultiHead(Q,K, V ) + v

(t−1)
i (4)

Q = K = V = Linear(v
(t−1)
i ) (5)

where MultiHead(Q,K, V ) is the multi-head self-attention mechanism defined as:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (6)

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O (7)

headi = Attention(QWQ
i , KW

K
i , V W

V
i ) (8)

After the multi-head attention, the feed-forward network (FFN) is applied,

v
(t)
i = FFN(v

(t)
i ) (9)
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FFN(x) = max(0, xW1 + b1)W2 + b2 (10)

Similarly, the edge features are updated by the inter-atomic Transformer layer,

u(i, j)
(t)
k = MultiHead(Q,K, V ) + u(i, j)

(t−1)
k (11)

Q = K = V = Linear(u(i, j)
(t−1)
k ) (12)

where the same multi-head self-attention and FFN mechanisms are applied to the edge

features,

u(i, j)
(t)
k = FFN(u(i, j)

(t)
k ) (13)

After updating the node and edge features with the intra-crystal and inter-atomic dual-

Transformer layers, the model concatenates the features by,

z
(t)
i,j,k = v

(t)
i ⊕ v

(t)
j ⊕ u(i, j)k (14)

where ⊕ means concatenation and z
(t)
i,j,k represents the combined feature of atoms and edges.

Then the atom feature vectors are updated through a non-linear graph convolution func-

tion,

v
(t+1)
i = v

(t)
i +

∑
j,k

σ(z
(t)
i,j,kW

(t)
f + b

(t)
f )� g(z

(t)
i,j,kW

(t)
s + b(t)s ) (15)

where g denotes the activation function, σ is the sigmoid function served as a gate, � denotes

element-wise multiplication, W
(t)
f and W

(t)
s are the convolution weight matrices, and b

(t)
f and

b
(t)
s are the bias vectors.

After R convolutional iterations, the network updates the feature vector v
(R)
i for each

atom. A pooling layer then aggregates these vectors into a global feature vector vc for the

entire crystal by,

vc = Pooling({v(R)
i | i ∈ atoms}) (16)

The pooled vector vc is a vector containing all the information of the subgraphs of the

crystal. It is permutation invariant, so it can capture the information ignoring the noise

and rotate translation. It is then passed through fully-connected layers to predict the target

property ŷ, with the training process minimizing the cost function J(y, ŷ), representing the

difference between the predicted property ŷ and the DFT-calculated property y.
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C. Crystal Angular Encoder

To enrich the information of edges, we go beyond merely distance information by adding

angular information into the edges, which allows for a more detailed depiction of the spatial

relationships between atoms. For a given atom i and its neighbor j, we calculated the related

angles θx, θy, and θz between the edge vector rij and the axes vectors x, y, and z by,

θx = cos−1
(

rij · x
‖rij‖‖x‖

)
, (17)

θy = cos−1
(

rij · y
‖rij‖‖y‖

)
, (18)

θz = cos−1
(

rij · z
‖rij‖‖z‖

)
. (19)

These angles are then encoded into a feature vector using an angular encoder, which

discretizes each angle into one of several predefined bins, written as,

Encodedθx [k] =

1, if k ·∆θ ≤ θx < (k + 1) ·∆θ

0, otherwise
, (20)

where ∆θ =
2π

bins
and k ranges from 0 to bins− 1. Analogous encoding processes apply

to θy and θz. The edge feature vector which combining RBF (Radial Basis Function) and

angular features, is used as the edge feature which is further processed in the model.

D. benchmark

In order to evaluate the performance, we used JARVIS-DFT36, dated 2021.8.18 as the

training database. The dataset comprises 25,922 materials with bandgap, formation energy,

and etc. For training, validation and testing splits, JARVIS-DFT36 database and its prop-

erties are split into 60% training, 20% validation, and 20% testing sets. To further evaluate

the performance, we merge two distinct datasets of perovskite materials37,38 to create a more

diverse and representative dataset which contains 3489 perovskite structures with formation

energy and bandgap, key properties for perovskites. For comparison, the state-of-the-art

GNN models of CGCNN and MEGNET are also used to model the formation energies and
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bandgaps of the materials involved in the teo materials database, and the resuts are listed

in TableI

TABLE I: benchmark on jarvist dataset and perovskite dataset. Ef and Eg denotes

formation energy and bandgap respectively.

target model MAE R2

Pero(Ef ) (eV/atom)

CGCNN 0.027 0.988

MEGNet 0.032 0.982

CTGNN 0.013 0.996

Pero(Eg) (eV)

CGCNN 0.285 0.855

MEGNet 0.296 0.845

CTGNN 0.156 0.960

Jarvist(Eg) (eV)

CGCNN 0.531 0.914

MEGNet 0.493 0.908

CTGNN 0.469 0.910

As listed in Table I, our proposed CTGNN model demonstrates superior performance

on the perovskites dataset on formation energy and bandgap prediction. The plots of the

target and prediction distribution are also shown in Fig 2. Specifically, CTGNN achieves the

lowest MAE on the formation energy prediction on the Pero dataset, compared to CGCNN

and MEGNet models. With the MAE of 0.013 eV/atom, CTGNN is 51.85% and 59.38%

better than CGCNN and MEGNet, whose MAE is 0.027 and 0.032 eV/atom respectively.

The R2 is also the highest, with 0.8% and 1.4% improvements. When it comes to the

bandgap prediction on the Pero dataset, CTGNN also surpasses CGCNN and MEGNet

models with a lower MAE and higher R2. To be more detailed, the MAE is 0.156 eV,

which is 45.26% and 47.30% better. The Jarvist dataset exhibits the same trend, with the

CTGNN model enjoying the lowest MAE of 0.469 eV, which is 11.67% and 4.87% better,

a significant improvement. These results underline the effectiveness of CTGNN in handling

complex material datasets, especially in the perovskites datasets over traditional methods

like CGCNN and MEGNet, highlighting its potential in the perovskites era.
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FIG. 2: Plots of predicted formation energy and bandgap versus target for CGCNN,

MEGNet, and CTGNN models, respectively. the upper and right part are the target and

prediction data distribution.

III. RESULTS AND DISCUSSIONS

A. Ablation Study

To understand the contribution of different components in the CTGNN model, we con-

ducted an ablation study on the Pero dataset for bandgap prediction. The study involved

removing key components from the model and evaluating the resulting performance. The

results are summarized in Table II.

TABLE II: Ablation study on Pero dataset for bandgap prediction.

Model MAE (eV) R2

CTGNN (full model) 0.156 0.960

Without Angular Encoding 0.188 0.946

Without inter-atomic Transformer 0.190 0.945

Without Transformer 0.285 0.855

As shown in Table II, removing the angular encoding and the neighbor Transformer from
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the CTGNN model leads to a decrease in performance. Specifically, without the angular

encoding, the MAE increases to 0.188 eV and the R2 decreases to 0.946. Similarly, without

the inter-atomic Transformer, the MAE increases to 0.190 eV and the R2 decreases to 0.945.

When the dual-Transformer is totally removed The performance drop to 0.285 from 0.190.

B. Explainability

To explore the explainability of our CTGNN model, we visualized the attention weights

of the first layer of the atomic transformer for four specific crystals: H4NSnF3, H4NGeI3,

C4H12NSnCl3, and C4H12NGeCl3 to help us understand how the model focuses on different

parts of the crystal structure during the prediction process.

Figure 3 shows the attention weights for the first layer of the transformer for six different

crystals. In these heatmaps, the x-axis and y-axis represent the sequence positions of the

atoms in the crystal structure, and the color intensity indicates the attention weight assigned

by the transformer.

From the visualizations, we can observe that similar molecular formulas tend to ex-

hibit similar attention patterns. For instance, H4NSnF3 and H4NGeI3, C4H12NSnCl3 and

C4H12NGeCl3 show somewhat similar attention weight distributions, indicating that the

model focuses on similar local atomic environments and interactions. This is expected as

both compounds have similar molecular structures, only the central atoms Sn and Ge, as

well as the differences between atoms F and I.

On the other hand, C2H8NPbCl3 and H5N2PbF3 show distinct attention weight patterns

compared to the first two. This difference reflects the varied atomic environments and inter-

actions present in these compounds, which significantly differ in their molecular composition.

The structures of these six crystals are shown in Figure 4.

The observed similarities and differences in attention patterns can be attributed to the

chemical nature of the elements involved. For example, Sn and Ge belong to the same group

in the periodic table and have similar chemical properties. Their similar attention patterns

suggest that the model captures the shared chemical behavior, such as bonding characteris-

tics and atomic radii, which are crucial for the crystal’s stability and properties. In contrast,

the distinct attention patterns for C2H8NPbCl3 and H5N2PbF3 highlight the different roles

of carbon and nitrogen in the chemical environment. Carbon forms strong covalent bonds
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FIG. 3: Visualization of attention weights for the first layer of the atomic transformer for

different crystals. The larger the corresponding parameter between two atoms, the

stronger the interaction. (a) corresponds to H4NSnF3. (b) corresponds to H4NGeI3. (c)

corresponds to C4H12NSnCl3. (d) corresponds to C4H12NGeCl3. (e) corresponds to

C24H8NPbCl3. (f) corresponds to H5N2PbF3.

and contributes to the rigidity and stability of the structure, whereas nitrogen’s bonding

and interactions can vary significantly depending on its oxidation state and surrounding

atoms. Additionally, the presence of different halogens (Cl and F) introduces variations in

electronegativity and bond strength, further influencing the attention patterns observed.

Based on the aforementioned chemical element analysis, X-ray diffraction (XRD) pat-
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FIG. 4: Side view of six crystal structures. The bandgap of each crystal is provided.

terns further confirm the structural similarities of these crystals. As shown in Figure 5(a),

H4NGeI3 and H4NSnF3 exhibit a relatively similar overall diffraction peak distribution,

particularly around the diffraction angles of approximately 26.8 and 39.0, where the peak

positions are closely aligned. Differences in the atomic sizes of Ge, Sn, I and F result in

variations in peak shape and intensity at specific diffraction angles. Specifically, the intro-

duction of Sn leads to a slight broadening of peaks and the splitting of certain localized

peaks. However, the critical lattice spacing and overall symmetry remain fundamentally

unchanged, and H4NGeI3 and H4NSnF3 can still be considered as having partially similar

crystal structures.

As shown in Figure 5(b), the diffraction peaks of C4H12NGeCl3 and C4H12NSnCl3 are
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FIG. 5: The XRD diffraction patterns of the first four crystal structures show similar peak

positions and shapes.

highly consistent across almost all 2θ positions. Notably, in the range of 10 to 40, the

positions of the main peaks completely overlap, and the intensity profiles are also nearly

identical. This indicates that the two materials share a high degree of structural similarity.

Although Ge and Sn are distinct elements, their substitution in these compounds has not

significantly altered the overall crystal symmetry or lattice parameters. Therefore, it can be

concluded that C4H12NGeCl3 and C4H12NSnCl3 possess highly similar crystal structures.

IV. CONCLUSION

CTGNN model represents a significant progress in the field of material computing, par-

ticularly in perovskite materials. By innovatively combining the advantages of Transformer

model and graph neural networks, CTGNN can capture both the local and global interac-

tions in materials efficiently. The addition of angular kernels allows for a more comprehensive

representation of atomic structures, surpassing the traditional models which only focus on

distances. Our results demonstrate that CTGNN outperforms existing models in predicting

key material properties such as formation energy and bandgap, which is confirmed by the

benchmark tests on multiple datasets. CTGNN not only enhance the ability to predict ma-

terial properties with greater accuracy, but also provide a solid foundation for discovering

new materials.
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